Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome.
نویسندگان
چکیده
Rett syndrome (RS) is a severe X-linked neurological disorder in which most patients have mutations in the methyl-CpG binding protein2 (MECP2) gene. No effective treatment exists. We previously showed that the Mecp2-deficient mice, a mouse model of RS, have highly variable respiratory rhythm and frequent apneas due to reduced norepinephrine (NE) content, and a drastic decrease of tyrosine hydroxylase (TH)-expressing neurons in the medulla. We showed here that treating these mice with desipramine (DMI), which specifically inhibits NE reuptake, significantly improved their respiratory rhythm during several weeks. In addition, the treatment significantly extended their lifespan. At the cellular level, we showed that the reduced number of TH-expressing neurons before treatment in the mutant animals was not due to apoptosis. Conversely, we found that DMI treatment increased the number of TH-expressing neurons in the mutant brainstem to reach wild-type levels. We showed that this increase was not due to cellular proliferation. We propose that the Mecp2-deficient TH-expressing neurons lose their ability to synthesize TH at some point during their postnatal development. Our results suggest that a pharmacological stimulation of the noradrenergic system could be a promising approach for the treatment of the respiratory dysfunction which causes a significant proportion of death in RS patients.
منابع مشابه
Oral treatment with desipramine improves breathing and life span in Rett syndrome mouse model.
Rett syndrome is a neurodevelopmental disease due to Mecp2 gene mutations that is associated to complex neurological symptoms, with bioaminergic deficits and life-threatening apneas related to sudden and unexpected death. In male mice, Mecp2-deficiency similarly induces medullary bioaminergic deficits, severe apneas and short life span. Here, we show that long-term oral treatment of Mecp2-defic...
متن کاملEffect of desipramine on patients with breathing disorders in RETT syndrome
Objective Rett Syndrome (RTT) is a severe neurodevelopmental condition with breathing disorders, affecting around one in 10,000 female births. Desipramine, a noradrenaline reuptake inhibitor, reduced the number of apneas in Mecp2-deficient mice, a model of RTT. We planned a phase 2 trial to test its efficacy and its safety on breathing patterns in 36 girls with RTT. Methods The trial was a 6-...
متن کاملGlyT2-Dependent Preservation of MECP2-Expression in Inhibitory Neurons Improves Early Respiratory Symptoms but Does Not Rescue Survival in a Mouse Model of Rett Syndrome
Mutations in methyl-CpG-binding protein 2 (MECP2) gene have been shown to manifest in a neurodevelopmental disorder that is called Rett syndrome. A typical problem that occurs during development is a disturbance of breathing. To address the role of inhibitory neurons, we generated a mouse line that restores MECP2 in inhibitory neurons in the brainstem by crossbreeding a mouse line that expresse...
متن کاملThe disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome.
People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central CO(2) chemoreception in these people is di...
متن کاملCorrection of respiratory disorders in a mouse model of Rett syndrome.
Rett syndrome (RTT) is an autism spectrum disorder caused by mutations in the X-linked gene that encodes the transcription factor methyl-CpG-binding protein 2 (MeCP2). A major debilitating phenotype in affected females is frequent apneas, and heterozygous Mecp2-deficient female mice mimic the human respiratory disorder. GABA defects have been demonstrated in the brainstem of Mecp2-deficient mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2007